Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.

نویسندگان

  • S A Combes
  • T L Daniel
چکیده

During flapping flight, insect wings must withstand not only fluid-dynamic forces, but also inertial-elastic forces generated by the rapid acceleration and deceleration of their own mass. Estimates of overall aerodynamic and inertial forces vary widely, and the relative importance of these forces in determining passive wing deformations remains unknown. If aeroelastic interactions between a wing and the fluid-dynamic forces it generates are minor compared to the effects of wing inertia, models of insect flight that account for passive wing flexibility would be far simpler to develop. We used an experimental approach to examine the contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. We attached fresh Manduca wings to a motor and flapped them at a realistic wing-beat frequency and stroke amplitude. We compared wing bending in normal air versus helium (approx. 15% air density), in which the contribution of fluid-dynamic forces to wing deformations is significantly reduced. This 85% reduction in air density produced only slight changes in the pattern of Manduca wing deformations, suggesting that fluid-dynamic forces have a minimal effect on wing bending. We used a simplified finite element model of a wing to show that the differences observed between wings flapped in air versus helium are most likely due to fluid damping, rather than to aerodynamic forces. This suggests that damped finite element models of insect wings (with no fluid-dynamic forces included) may be able to predict overall patterns of wing deformation prior to calculations of aerodynamic force production, facilitating integrative models of insect flight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial redirection of thrust forces for flight stabilization

Insects are highly maneuverable fliers. Naturally, engineers have focused much of their efforts on understanding the role of insect wing design and actuation for maneuvering and control of bio-inspired micro air vehicles. However, many insects exhibit strong visually mediated abdominal reflexes. The hawkmoth, Manduca sexta, has a particularly large abdomen, and recent evidence suggests that the...

متن کامل

Aerodynamic and functional consequences of wing compliance

A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces that arise from periodic accelerations of the wing. Passive wing deformation is an unavoidable fea...

متن کامل

Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction ba...

متن کامل

Environment Identification in Flight using Sparse Approximation of Wing Strain

This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta hawkmoth wing undergoing different flow environments. Our data-driven method learns low-dimension...

متن کامل

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Mul- tibody Dynamics Approach

This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2003